35 research outputs found

    Human-machine cooperation in large-scale multimedia retrieval : a survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Intelligent video processing using data mining techniques

    No full text

    On the Generality of Codebook Approach for Sensor-Based Human Activity Recognition

    No full text
    With the recent spread of mobile devices equipped with different sensors, it is possible to continuously recognise and monitor activities in daily life. This sensor-based human activity recognition is formulated as sequence classification to categorise sequences of sensor values into appropriate activity classes. One crucial problem is how to model features that can precisely represent characteristics of each sequence and lead to accurate recognition. It is laborious and/or difficult to hand-craft such features based on prior knowledge and manual investigation about sensor data. To overcome this, we focus on a feature learning approach that extracts useful features from a large amount of data. In particular, we adopt a simple but effective one, called codebook approach, which groups numerous subsequences collected from sequences into clusters. Each cluster centre is called a codeword and represents a statistically distinctive subsequence. Then, a sequence is encoded as a feature expressing the distribution of codewords. The extensive experiments on different recognition tasks for physical, mental and eye-based activities validate the effectiveness, generality and usability of the codebook approach
    corecore